
Software Technology to Enable Reliable
High-Performance Distributed Disk Arrays

First Year Progress Report

Michael S. Warren, Chris L. Fryer, M. Patrick Goda, Ryan Joseph

Mail Stop B227
Theoretical Astrophysics

Los Alamos National Laboratory
Los Alamos, NM 87545

Abstract

It is currently possible to construct a single-node RAID storage system with a 2 Terabyte capacity
using commodity serial-ATA hard disk drives for less than $4000. Within a very few years, a
cluster of such systems (a distributed disk array) will be able to provide over a petabyte of storage
for less than 1 million dollars. Obtaining reliablity and good performance from such a system is
the focus of our project.

Over the past year, we have established a number of testbed systems containing over 50 Ter-
abytes of storage. Roughly half of this amount is in the 288 processor Space Simulator Beowulf
cluster, with the remainder in a variety of RAID systems. Significant progress to date includes
detailed failure statistics on a variety of disk drives, performance benchmarks on a number of dif-
ferent systems, and modifications to the Linux Network Block Device (NBD) driver to support
RAID-5 arrays across multiple cluster nodes.

1 Introduction

The advent of commodity microprocessors with adequate floating-point performance and low-
priced fast ethernet switches contributed to the emergence of Beowulf clusters in the mid-90s. We
are currently poised for a similar advance in distributed disk arrays (DDAs), due to the dramatic
decline in the price of commodity disk drives.

The cost per Gbyte for 7200 RPM IDE disk drives is currently less than $1.00. Several groups
have demonstrated fault-tolerant Terabyte RAID servers for a total cost of under $2000 per Ter-
abyte. Used in a parallel cluster environment, multi-terabyte disk arrays with achievable read/write
bandwidths that greatly exceed available Gigabit local and wide-area networking technology are
possible. Additionally, the greater CPU/storage ratio in a DDA offers techniques which are not
possible in traditional RAID arrays.

While projects such as the parallel virtual file system have demonstrated clear utility, they
lack the fault-tolerance that could be obtained via the efficient calculation and storage of parity or
mirroring information between nodes (analogous to RAID techniques within a node). This addi-
tional functionality would add orders-of-magnitude to the reliability of mass storage on clustered
systems.

Also, while disk areal density has been improving at an annual rate of about 100% per year,
disk latency has been improving 10%, so disks are becoming increasingly unbalanced in terms
of capacity and latency. By intelligently replicating and caching data in a DDA, it is possible to
reduce latencies to access terabytes or more of data by an order of magnitude.

2 Progress During Year 1

2.1 Network Block Device

This project depends fundamentally on scaling disk storage from a single system to a parallel
system. The networking abstraction used to communicate between systems is an important facet
of this approach.

Recently, the iSCSI specification was developed in order to standardize communication with
network attached SCSI devices. Our summer intern, Ryan Joseph, investigated all of the major
iSCSI implementations to see if they would provide a solid foundation to proceed from. The con-
clusions from this research were that iSCSI was over-engineered, and no robust implementations
currently exist. The two most successful implementations were the UNH iSCSI and Linux iSCSI
packages, but they were not compatible with each other. Additionally, use of iSCSI with ATA
devices would require an additional layer of software.

2

However, the “Network Block Device” exists as a standard part of the Linux kernel, and pro-
vides the functionality required for network attached storage. An NBD is ”a long pair of wires”.
It makes a remote disk on a different machine act as though it were a local disk on your machine.
It looks like a block device on the local machine where it’s typically going to appear as /dev/nda.
The remote resource doesn’t need to be a whole disk or even a partition. It can be a file. A graphic
representation of an NBD is shown in Figure 2.1

The NBD system works by emulating a block device on the client side, while actual requests
to that device are passed over the network to the true block device or file on one or many NBD
servers. NBD consists of two user-space programs and one kernel-space module: the two user-
space programs are a client and server, respectivley, while the module loaded into any kernel that
wishes to be a client for NBD.

The most common sequence of operations required to start an NBD system consists of:

• Start the user-space nbd-server on all machines 0..n that wish to act as a block device server.
This process simply waits for socket requests and fulfills them by accessing the device (ie:
/dev/hda) or file (ie: /tmp/nbd-device).

• Load the kernel module nbd.o into a running kernel on a machine that will act as the ”head”
or ”master” (machine M) for the NBD system: the kernel module registers as major device
no. 43, and the MAKEDEV.enbd script will create devices in /dev with this major number.
This kernel driver sets up NBD as a block device, creating the standard kernel request queue
for NBD.

• Run one instance of nbd-client on machine M for each running nbd-server on machines 0..n.
Each instance of nbd-client will need to be attached to a different device in /dev with major
number 43, ie: each nbd-client is a different minor numbered device (the devices are usually
named /dev/nbN or /dev/ndxN).

• Operate on the NBD devices as if they were actual hardware block devices: the linux RAID
layer only requires that devices it operates on be standard block devices, so NBD devices
make perfect RAID elements.

When you start NBD, this is (for the most part) what happens in the code:

• nbd-client sets up a client socket and goes through a large amount of error-checking to ensure
that the proper conditions are met for NBD to be used. Just after the client forks into the
background, it sends anNBD_DO_IT ioctl to the server.

• nbd-server connects the client-end socket, and entersmainloop() serveconnection().
Since Linux block devices are fairly simple (responding usually only to reads and writes),
mainloop() listens for a read, write, or disconnect request from the client kernel driver, and
satifies the request by accessing the device.

• Only the client side, theNBD_DO_IT ioctl that was dispatched by nbd-client upon a succesful
connection to an NBD server causes the kernel module to runnbd_do_it() (a function call
this time), which enters an infinite loop in which it waits for requests from the kernel block
device layer to process. If the NBD kernel module recieves a request from the kernel (ie: a

3

read or write request), it goes through the normal block device motions (reading from the
request queue, runningb_end_io()), but instead of accessing a local block device, NBD
dispatches a request over the connected network socket (which has been set in the kernel
module by theNBD_SOCK_SET ioctl from user-space).

• If a socket request fails (which can happen if the network is fairly congested) in the kernel
module, the module assumes that it is a fatal error and closes the request queue and socket.
This can be a large problem when using NBD devices in a RAID array, as the cause of the
failure is usually just network congestion that will clear up. However, the RAID layer has
not written to be aware of network devices, so there is a fair amount that needs to be done to
keep the RAID layer from failing constantly when using NBD devices as elements.

The last item was resolved by developing modifications to the nbd driver to make it more
robust. These modifications were successful enough to create a number of large NBD devices
using the Space Simulator. Performance results are given in the benchmarks section below.

2.2 The Space Simulator

The Space Simulator [1, 2] is our third generation Beowulf cluster. The first was Loki [3], which
was constructed in 1996 from 16 200 MHz Pentium Pro processors for $50k. Loki was among the
earliest generation of Beowulf clusters [4], and was the first to be recognized with the Gordon Bell
price/performance award [5]. Loki was followed by the Avalon cluster [6], which used 144 alpha
processors and cost about $300k. Avalon also won a Gordon Bell prize [7] and was ranked as the
113th fastest computer in the world in June 1998 [8]. The Space Simulator follows the same basic
architecture as our previous machines, but is the first to use Gigabit Ethernet as the network fabric,
and requires significantly less space than a cluster using typical ATX cases. In the context of this
project, the Space Simulator provides a testbed with about 20 Terabytes of storage in a standard
Beowulf architecture.

The funds to purchase the Space Simulator became unexpectedly available in mid-July of 2002.
Fiscal constraints required the system to be delivered by September 31. This left little time for
benchmarking systems and testing components. Our goal was to purchase a computer which would
obtain the highest performance possible on the astrophysics codes we wanted to run, within the
budget we were alloted. It had to be delivered within one month. The machine also had to be
reliable and maintainable enough that our very limited system administration resources would be
capable of keeping the machine operational. We estimated the amount of cooling capacity available
would limit the cluster to about 35 kW of power dissipation. The Space Simulator architecture (see
Table 1) was defined by mid-August of 2002, based on the Shuttle XPC chassis.

Our limited preliminary benchmarking demonstrated our codes were faster on Intel processors
than on similarly priced AMD processors and that higher performance RDRAM did not justify
its extra cost over DDR SDRAM. The Green Destiny architecture [9] was ruled out on price-
performance grounds, since our space, power and cooling were not sufficiently constrained. The
XPC system was selected due to its small size, the elimination of the failure-prone CPU fan, and
its ability to support the relatively new 533 MHz front side bus for the Intel Pentium 4 architecture.
The main disadvantages of the system were that it provided only a single 32-bit 33 MHz PCI
expansion slot, and 10% of its memory bandwidth was shared with the on-board video controller.

4

Qty. Price Ext. Description

294 280 82,320 Shuttle SS51G mini system (bare)
294 254 74,676 Intel P4/2.53GHz, 533MHz FSB, 512k cache
588 118 69,384 512Mb DDR333 SDRAM (1024Mb per node)
294 95 27,930 3com 3c996B-T Gigabit Ethernet PCI card
294 83 24,402 Maxtor 4K080H4 80Gb 5400rpm Hard Disk
294 35 10,290 Assembly Labor/Extended Warranty

4,000 Cat6 Ethernet cables
3,300 Wire shelving/switch rack
1,378 Power strips

1 186,175 Foundry FastIron 1500+800, 304 Gbit ports
Total $483,855 $1646 per node 5.06 Gflop/s peak/node

Table 1: Space Simulator architecture and price (September, 2002). The total cost per node was
$1646, with $728 (44%) of that figure representing the Network Interface Cards and Ethernet
switches

It is interesting to note that the volume occupied by a Shuttle XPC chassis (30x20x18.5 cm or 0.011
cubic meters) is nearly the same as a 1U rackmount chassis (19x23.6x1.75 inches or 0.013 cubic
meters). We have found the ability to easily remove a node from a shelf to be a major advantage
over the complexities of a typical 1U rackmount on rails solution. Overall, the architecture which
was chosen has proven to be an excellent solution, and the limited amount of benchmarking and
testing prior to ordering the system has not resulted in problems.

The Space Simulator was selected as a finalist for the Gordon Bell price/performance award.
Our results were quoted from a typical cosmology run, which took place over a continuous 24 hour
period on 250 processors. The code saved 1.5 Tbytes of data, and performed 1016 floating point
operations, for an average I/O rate of 417 Mbytes/sec and 112 Gflop/s. I/O was done in parallel to
and from the local disk on each processor, with a peak I/O rate which was near 7 Gbytes/sec.

2.3 Benchmarks

We evaluated a number of systems in order to quantify the performance of single disks, as well
as different types of hardware and software RAID5 systems. Our initial results indicate the best
price/performance system uses Serial ATA disks with a 3ware controller and Linux software RAID
(Table 2.

2.4 Hardware Monitoring

We have gathered nearly 1 year of disk failure statistics, including the internal statistics gathered
by the internalSMART system included with all modern disk drives. An example of the types of
statistics which can be monitored are listed below.

SMART Attributes Data Structure revision number: 16
Vendor Specific SMART Attributes with Thresholds:

5

Figure 1: The Space Simulator ranked at #85 on the 20thTOP500 list of the fastest computers in
the world, as determined by the Linpack benchmark. Performance of 665.1 Gflop/s was obtained
on 288 processors in October 2002. In April 2003, we obtained a higher figure of 757.1 Gflop/s
through the use of a slightly faster version of ATLAS and using LAM instead ofmpich. This ranks
at #88 on the 21stTOP500 list, and that performance would have ranked the Space Simulator at #69
on the 20thTOP500 list. We believe our results are the first example of a machine in theTOP500
with price/performance of better than 1 dollar per Mflop/s (we obtain 63.9 cents per Mflop/s, or
$639 per Gflop/s).

Write Re-Write Read Re-Read
IDE RAID-5 80.12 115.48 210.32 204.69
Outer Track IDE RAID 93.31 123.44 269.94 276.45
SATA Hardware RAID 27.44 20.09 62.73 61.24
SATA Software RAID, ext2 95.99 81.28 230.18 226.63
SATA Software RAID, ext3 77.43 79.45 229.31 220.09
NBD baseline, 1kb BS 20.76 19.14 78.63 79.19
NBD w/ 4kb BS - 22.38 22.33 38.70
NBD w/ 512b BS 20.24 19.70 27.84 27.23
14-disk NBD RAID-5 91.23 93.46 56.38 56.78
11-disk NBD RAID-5 44.92 54.92 75.82 67.99
5-disk NBD RAID-5 16.34 16.47 81.83 72.66
tmpfs RAID-0 107.96 125.31 95.78 96.77
tmpfs RAID-5 81.07 87.52 90.86 90.90

Table 2: Hardware Storage Benchmarks (all data in Mbytes/sec)

6

ID# ATTRIBUTE_NAME VALUE WORST THRESH TYPE UPDATED RAW_VALUE
1 Raw_Read_Error_Rate 200 200 051 Pre-fail Always 0
3 Spin_Up_Time 102 100 021 Pre-fail Always 5691
4 Start_Stop_Count 100 100 040 Old_age Always 10
5 Reallocated_Sector_Ct 200 200 140 Pre-fail Always 0
7 Seek_Error_Rate 200 200 051 Pre-fail Always 0
9 Power_On_Hours 095 095 000 Old_age Always 4051
10 Spin_Retry_Count 100 253 051 Pre-fail Always 0
11 Calibration_Retry_Count 100 253 051 Pre-fail Always 0
12 Power_Cycle_Count 100 100 000 Old_age Always 10

196 Reallocated_Event_Count 200 200 000 Old_age Always 0
197 Current_Pending_Sector 200 200 000 Old_age Always 0
198 Offline_Uncorrectable 200 200 000 Old_age Always 0
199 UDMA_CRC_Error_Count 200 253 000 Old_age Always 0
200 Multi_Zone_Error_Rate 200 200 051 Pre-fail Offline 0

TheSMART system allows us to measure the temperature of each drive. A graphical representa-
tion of the entire cluster is shown in figure 2. The chilled air enters the cluster from the left side, so
there is strong temperature gradient across the nodes. Since the temperature varies significantly, in
a known way, it may be possible to quantify the effect of temperature on the probability of failure
for a typical disk drive.

Figure 2: A smoothed representation of the temperature across the cluster.

Overall, about 10% of the drives in the Space Simulator cluster have failed in their first year
of operation. This is significantly higher than the quoted MTBF for these drives. We plan to
investigate the precise definition of “failure” used in the vendor’s numbers.

2.5 Reference “I/O Brick” design

We investigated a number of storage systems in order to determine the optimal “building block”
for larger systems. Our final reference design is listed in Table 3, which has a storage capacity

7

Figure 3: Firewire and DVD

Figure 4: AICIPC Hot-Swap Chassis (Parallel ATA and Serial ATA)

of 2 Tbytes at a cost of about $4000. We purchased 10 such systems, which will be the testbed
hardware for further software development.

3 Plans for Next Year

Linux version 2.4 has serious limitations:

• Limit of 27 devices in a RAID

• Limit of 2 Tbytes per filesystem

• A few bad sectors on a disk cause the RAID driver to declare the entire disk “failed”

• Rebuilding arrays is time-consuming. It might be possible to optimize this by extending the
journal already used for the filesystem

8

Figure 5: Serial ATA solutions

Qty. Price Ext. Description

1 260 260 Intel P4 Processor 2.8GHz, 533MHz FSB
8 307 2456 Western Digital WD2500JD 250GB SATA 7200RPM
1 530 530 3ware 8506-8 RAID card
1 322 322 TYAN GC-SL S2707G2N-533 with Dual GigE and PCI-X
2 120 240 Corsair 2x512MB DDR266 PC2100 ECC Registered memory
1 150 150 Supermicro 5 Bay Hot-Swapable SATA HDD Enclosure
1 75 75 Mid-Tower case, 4x5.25 exposed, 4x3.5 int., extra fans
1 94 94 Enermax EG465P-VE (FCA) 431W Power Supply
1 80 80 Assembly
Total $4207 $2.10 per Gbyte

Table 3: Mid-tower storage system pricing, August 2003

We plan to use the new Linux version 2.6 kernel to bypass many of these limitations, and our
work will focus on extending the network block device to enhance its performance and scalability.

We will also work on demonstrating techniques for cheaply and efficiently duplicating and
transporting multi-terabyte datasets. Currently, 1 Terabyte of data stored on IDE disk drives weighs
6 lbs. Using an overnight courier, that data can be transported across the country for $25. To trans-
port the same amount of data over the Internet in the same amount of time requires a constant 100
Mbits/sec. Current wholesale costs for Internet bandwidths are in the range of tens of thousands
of dollars per month for a committed 100 Mbit connection. Even a slower 10 Mbit connection
would cost more in a month than the cost of the disk drives to store a Terabyte, and the cost of the
disk hardware would be amortized over multiple transport cycles. The obvious conclusion is that
it is 10x cheaper and likely faster to move Tera-scale datasets via physical media, rather than the
Internet.

9

4 Publications and Presentations

M. S. Warren, C. L. Fryer, and M. P. Goda. The Space Simulator. InProceedings of CWCE ’03,
San Jose, 2003.
M. S. Warren, C. L. Fryer, and M. P. Goda. The space simulator: Modeling the universe from
supernovae to cosmology. InProceedings of the ACM/IEEE SC2003 Conference, New York,
2003. ACM Press.
Chris L. Fryer and Michael S. Warren. The collapse of rotating massive stars in 3-dimensions.Ap.
J., 2003. (submitted).
Invited talk at ClusterWorld conference and Expo, San Jose CA June 2003.
Seminar at Caltech Center for Advanced Computing Research, Pasadena CA, August 2003.
Gordon Bell Prize Finalist Presentation at SC2003, Phoenix AZ, November 2003.

References

[1] M. S. Warren, C. L. Fryer, and M. P. Goda. The Space Simulator.http://
space-simulator.lanl.gov/, 2002.

[2] M. S. Warren, C. L. Fryer, and M. P. Goda. The Space Simulator. InProceedings of CWCE
’03, San Jose, 2003.

[3] M. S. Warren and M. P. Goda. Loki – commodity parallel processing.http://loki-www.
lanl.gov/, 1996.

[4] D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband, U. A. Ranawake, and C. V. Packer.
BEOWULF: A parallel workstation for scientific computation. InProceedings of the 1995
International Conference on Parallel Processing (ICPP), pages 11–14, 1995.

[5] M. S. Warren, J. K. Salmon, D. J. Becker, M. P. Goda, T. Sterling, and G. S. Winckelmans.
Pentium Pro inside: I. A treecode at 430 Gigaflops on ASCI Red, II. Price/performance of
$50/Mflop on Loki and Hyglac. InSupercomputing ’97, Los Alamitos, 1997. IEEE Comp.
Soc.

[6] M. S. Warren, A. Hagberg, D. Moulton, and D. Neal. The avalon beowulf cluster.http:
//cnls.lanl.gov/avalon, 1998.

[7] M. S. Warren, T. C. Germann, P. S. Lomdahl, D. M. Beazley, and J. K. Salmon. Avalon: An
Alpha/Linux cluster achieves 10 Gflops for $150k. InSupercomputing ’98, Los Alamitos,
1998. IEEE Comp. Soc.

[8] J. J. Dongarra, H. W. Meuer, and Strohmaier E. TOP500 supercomputer sites.Supercom-
puter, 13(1):89–120, 1997.

[9] M. S. Warren, E. H. Weigle, and W. Feng. High-density computing: A 240-processor Be-
owulf in one cubic meter. InSC ’02, Los Alamitos, 2002. IEEE Comp. Soc.

10

[10] M. S. Warren, C. L. Fryer, and M. P. Goda. The space simulator: Modeling the universe from
supernovae to cosmology. InProceedings of the ACM/IEEE SC2003 Conference, New York,
2003. ACM Press.

[11] Chris L. Fryer and Michael S. Warren. The collapse of rotating massive stars in 3-dimensions.
Ap. J., 2003. (submitted).

[12] J. Salmon and M. S. Warren. Parallel out-of-core methods for N-body simulation. In8th
SIAM Conf. on Parallel Processing for Scientific Computing, Philadelphia, 1997. SIAM.

11

